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Abstract
Using the geometry of the infinite isotropic Grassmannian related to the Hirota–
Ohta-coupled KP hierarchy, we construct its elementary Bäcklund–Darboux
transformations.

PACS numbers: 02.20.Tw, 02.30.Jr

1. Introduction

The Hirota–Ohta-coupled KP system was introduced in [11] to obtain a Hirota bi-linear
hierarchy of KP type that has Pfaffian solutions (see also [7–9, 21] for more hierarchies of this
type). It contains the following Hirota bilinear equations:(
D4

1 − 4D1D3 + 3D2
2

)
τ · τ = 24σσ((

D3
1 + 2D3

)
D2 − 3D1D4

)
τ · τ = 12D1σ · σ(

D6
1 + 40D3

1D3 + 40D2
3 − 216D1D5 + 45D2

1D
2
2 + 90D2D4

)
τ · τ

= 360
(
D2

1 + D2
)
σ · σ(

D6
1 − 20D3

1D3 − 80D2
3 + 144D1D5 − 45D2

1D
2
2

)
τ · τ = −360D2

1σ · σ

· · ·

(1.1)

(
D3

1 + 2D3 + 3D1D2
)
σ · τ = 0(

D4
1 − 4D1D3 − 3D2

2 − 6D4
)
σ · τ = 0(

3D5
1 + 72D5 +

(−10D3
1 + 40D3

)
D2 − 15D1D

2
2 + 30D1D4

)
σ · τ = 0(

D5
1 − 10D2

1D3 + 24D5 +
(−5D3

1 + 20D3
)
D2

)
σ · τ = 0

· · ·

(1.2)
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(
D3

1 + 2D3 − 3D1D2
)
σ · τ = 0(

D4
1 − 4D1D3 − 3D2

2 + 6D4
)
σ · τ = 0(

3D5
1 + 72D5 +

(
10D3

1 − 40D3
)
D2 − 15D1D

2
2 − 30D1D4

)
σ · τ = 0(

D5
1 − 10D2

1D3 + 24D5 +
(
5D3

1 − 20D3
)
D2

)
σ · τ = 0

· · ·

(1.3)

where

P(D)f · g = P

(
∂

∂y1
,

∂

∂y2
, . . .

)
(f (x + y)g(x − y)|y1=y2=···=0.

This hierarchy of equations has gone through repeated discoveries and re-discoveries, e.g. it is
the same as the Pfaff lattice of Adler and van Moerbeke et al [1–5], which plays a role in the
theory of random matrices. It has symmetric and symplectic matrix integrals as solutions (see
also [18, 20]). It is also the same as one of the DKP hierarchies of Kac and the author [17],
which describes some infinite-dimensional Clifford group orbit (see also [20]). The original
work of Hirota and Ohta [11] from 1991 is only very recently broadly cited. However, the
spin-representation of this hierarchy, together with its bilinear formulation (and that of the
modified hierarchy, as mentioned in theorem 2.1 of this paper) already appears in 1983 in a
paper by Jimbo and Miwa [14]. A wavefunction formulation can already be found in [12],
which dates from 1989. Using this spin-representation formulation we will construct in a
geometric way elementary Bäcklund–Darboux transformations in the style of [10]. To do that
we will first formulate the hierarchy in the framework of [14, 17] and show that the above
equations indeed appear in this hierarchy. Sections 2, 3, except the part on eigenfunctions,
also appear in some form in [17]. The wavefunction, however has some slightly different
form there. Although proposition 4.1, which is the key to the elementary Bäcklund–Darboux
transformation, also appears in [17], it was not yet used to construct these transformations.
Recently, there has been considerable interest in particular solutions of this hierarchy (see,
e.g., [13] or [6]) and Bäcklund–Darboux-type transformations could prove to be especially
useful in this context.

2. Clifford algebra construction of the coupled KP

The Clifford algebra approach or spin-representation formulation of the coupled KP hierarchy
first appeared in [14] (see also [17]). The approach we present here is based on the well-known
construction of vertex algebras (see, e.g., [15]).

Let F be the vector space F = C[q, q−1, t1, t2, . . .]. We decompose F as follows:

F =
⊕
k∈Z

Fk where Fk = qk
C[t1, t2, . . .].

Consider the vertex operators, i.e., generating series of operators

ψ±(z) =
∑

i∈ 1
2 +Z

ψ±
i z−i− 1

2

= q±1z
±q ∂

∂q e±ξ(t,z) e∓η(t,z) (2.1)

where

ξ(t, z) =
∞∑

k=1

tkz
k and η(t, z) =

∞∑
k=1

1

k

∂

∂tk
z−k.
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Then (see, e.g., [15])

ψ±
i ψ±

j + ψ±
j ψ±

i = 0 ψ±
i ψ∓

j + ψ∓
j ψ±

i = δi,−j (2.2)

ψ+
−m+ 1

2
ψ+

−m+ 3
2
· · · ψ+

− 3
2
ψ+

− 1
2
· 1 = qm

ψ−
−m+ 1

2
ψ−

−m+ 3
2
· · · ψ−

− 3
2
ψ−

− 1
2
· 1 = q−m

(2.3)

and

ψ+
k · qm = 0 for k > −m ψ−

k · qm = 0 for k > m. (2.4)

Consider the vector space V = V + ⊕V −, where V ± = ⊕
i∈Z+ 1

2
Cψ±

i with symmetric bilinear
form (

ψ±
i , ψ±

j

) = 0
(
ψ±

i , ψ∓
j

) = δi,−j . (2.5)

We have thus constructed F as the spin module of the infinite Clifford algebra C�V with
relations (u, v ∈ V ):

uv + vu = (u, v)1. (2.6)

Define the bosonic fields

α(z) =
∑
k∈Z

αkz
−k−1 =: ψ+(z)ψ−(z) : (2.7)

where the normally ordered product between these fermions is defined as usual

: akb� :=
{
akb� if k � �

−b�ak if k > �.

The αk form the oscillator algebra,

[αk, α�] = kδk,−�

and

α−k · qm = ktkq
m

αk · qm = 0 for k > 0

α0 · qm = mqm.

In fact

α−k = ktk αk = ∂

∂tk
α0 = q

∂

∂q
. (2.8)

Consider the operator σ = (−1)
q ∂

∂q . The Clifford algebra C�V and the Fock space F
decomposes into eigenspaces with respect to σ , i.e. C�0V and C�1V (F0 and F1) be the 1,
respectively −1 eigenspaces, then Fν = ⊕

k∈ν+2Z
Fk .

Let (C�V )× denote the multiplicative group of invertible elements of the algebra C�V .
We denote by Pin V the subgroup of (C�V )× generated by all the elements a such that
aV a−1 = V and let Spin V = Pin V ∩ C�0V . Then clearly Fν is a Spin V -module. Let
O0 = Spin V · 1 (resp. O1 = Spin V · q) be the spin V -orbit of 1 (resp. q). Define the
annihilator space Ann τ for τ ∈ Oν :

Ann τ = {v ∈ V |vτ = 0}.
Then

Ann 1 =
⊕
k>0

(
Cψ+

k ⊕ Cψ−
k

)
Ann q =

⊕
k>−1

Cψ+
k ⊕

⊕
k>1

Cψ−
k
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are both maximal isotropic subspaces of V . Recall that a subspace W ⊂ V is isotropic if
(v,w) = 0 for any v,w ∈ W . An element v ∈ V is called isotropic if (v, v) = 0 and
anisotropic if (v, v) �= 0. Since for g ∈ Spin V

Ann gqν = {gvg−1|v ∈ Ann qν}
we find that Ann τ is a maximal isotropic subspace of V . In fact one can show (see [17]) that
for any maximal isotropic subspace W of V such that W contains the subspace⊕

k>N

(
Cψ+

k ⊕ Cψ−
k

)
for some N � 0, there exists a g ∈ Spin V such that either W = Ann g · 1 or W = Ann g · q.
We call the collection of all such maximal isotropic subspaces of V the DKP Grassmannian.
These group orbits are characterized by the following theorem [14, 17].

Theorem 2.1.

(a) If τ ∈ Fν (ν ∈ Z/2Z) and τ �= 0, then τ ∈ Oν if and only if τ satisfies the (charged)
DKP-equation or coupled KP equation:

Resz ψ+(z)τ ⊗ ψ−(z)τ + ψ−(z)τ ⊗ ψ+(z)τ = 0. (2.9)

(b) Elements τν ∈ Oν, τµ ∈ Oµ,µ �= ν, satisfy the Modified DKP hierarchy:

Resz ψ+(z)τµ ⊗ ψ−(z)τν + ψ−(z)τµ ⊗ ψ+(z)τν = τν ⊗ τµ (2.10)

if and only if the space

(Ann τ0 + Ann τ1)/(Ann τ0 ∩ Ann τ1)

is two-dimensional and the induced bilinear form on it is non-degenerate.

It is clear that any τ ∈ Oν can be written as

τ =
∑
n∈Z

τn(t)q
n

where

τn(t) = 0 if n �∈ ν + 2Z.

Substituting this and the vertex operators (2.1) into (2.9) and writing t ′ respectively t ′′ for
the first and second components of the tensor product, we obtain the following hierarchy of
differential equations. We find for all n,m ∈ Z with m + n ∈ 2Z the following equation:

Resz zn−1 eξ(t ′,z) e−η(t ′,z)τn−1(t
′)z−m−1 e−ξ(t ′′,z) eη(t ′′,z)τm+1(t

′′)

+ z−n−1 e−ξ(t ′,z) eη(t ′,z)τn+1(t
′)zm−1 eξ(t ′′,z) e−η(t ′′,z)τm−1(t

′′) = 0. (2.11)

Make the change of variables

tk = 1
2 (t ′k + t ′′k ) sk = 1

2 (t ′k − t ′′k ) (2.12)

and use the elementary Schur functions defined by∑
k∈Z

Pk(t)z
k = eξ(t,z) (2.13)

then (2.11) is equivalent to
∞∑

j=0

Pj (2s)Pj+n−m−1

(
− ∂̃

∂s

)
τn−1(s + t)τm+1(t − s)

+ Pj (−2s)Pj+m−n−1

(
∂̃

∂s

)
τn+1(s + t)τm−1(t − s) = 0. (2.14)
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Here ∂̃
∂s

stands for
(

∂
∂s1

, 1
2

∂
∂s2

, 1
3

∂
∂s3

, . . .
)
. Using Taylor’s formula this turns into the following

generating series of Hirota bilinear equations:
∞∑

j=0

Pj (2s)Pj+n−m−1(−D̃) e
∑∞

r=1 srDr τn−1 · τm+1

+ Pj (−2s)Pj+m−n−1(D̃) e
∑∞

r=1 srDr τn+1 · τm−1 = 0. (2.15)

The simplest Hirota bilinear equations of the charged DKP hierarchy, appear in the constant
term when we take m − n = 4 (m − n = 0, 2 give trivial equations):(

D3
1 + 3D1D2 + 2D3

)
τn−2 · τn = 0. (2.16)

The coefficient of s3 with n − m = 2 gives(
D4

1 − 4D1D3 + 3D2
2

)
τn · τn = 24τn+2τn−2. (2.17)

Now, keeping n − m = 2 and taking the coefficient of s4, s5 and s2s3 gives all the other
equations of (1.1). If we have m − n = 4 and take the coefficients of s1 and s2

1 we obtain the
second and last equations of (1.2). The coefficient of s2 gives(

D5
1 + 20D2

1D3 + 30D1D4 + 24D5 − 15D1D
2
2

)
τn−2 · τn.

Combining this with the last equation of (1.2) gives the third equation of (1.2). Finally taking
n − m = 4 and determining the coefficients of 1, s1, s

2
1 and s2 gives the Hirota bilinear

equations of (1.3).

Remark 2.1. The Hirota bilinear equation (2.17) says the following. If we know two
nonzero neighbours τn and τn+2, then using (2.17) we can determine all other τm and hence the
whole τ .

3. Sato and Lax equations

We return to equation (2.11), or rather to the following equation which is equivalent to (2.11)
if n + m ∈ 2Z and to the modified DKP hierarchy if n + m �∈ 2Z:

Resz zn−1 eξ(t ′,z) e−η(t ′,z)τn−1(t
′)z−m−1 e−ξ(t ′′,z) eη(t ′′,z)τm+1(t

′′)
− (−z)−n−1 e−ξ(t ′,−z) eη(t ′,−z)τn+1(t

′)(−z)m−1 eξ(t ′′,−z) e−η(t ′′,−z)τm−1(t
′′)

= 1
2 (1 − (−1)n+m)τn(t

′)τm(t ′′). (3.1)

We want to see this equation as one entry of a 2 × 2 matrix bilinear equation. Let

Q±(t, z) = diag(e±ξ(t,z), e∓ξ(t,−z))

R±(n,±z) = diag(z±n, (−z)∓n)
(3.2)

P ±(n, t,±z) = 1

τn(t)

(
e∓η(t,z)τn(t) iz−2 e±η(t,−z)τn±2(t)

−iz−2 e∓η(t,z)τn∓2(t) e±η(t,−z)τn(t)

)
(3.3)

and put

�±(n, t, z) = P ±(n, t,±z)R±(n,±z)Q±(t, z) (3.4)

then (3.1) is equivalent to

Resz �+(n, t ′, z)t�−(m, t ′′, z) = 1 − (−1)n+m

2τn(t ′)τm(t ′′)

(
τn+1(t

′)τm−1(t
′′) −iτn+1(t

′)τm+1(t
′′)

−iτn−1(t
′)τm−1(t

′′) −τn−1(t
′)τm+1(t

′′)

)
.

(3.5)
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We call �+(n, t, z) the nth wavefunction and �−(n, t, z) the adjoint nth wavefunction. Writing
x for t1 and ∂ for ∂x , we can express the wavefunctions as pseudo-differential operators (see
[16] for more information) P ±(n, t, ∂)R±(n, ∂) acting on Q±(t, z)

�±(n, t, z) = P ±(n, t, ∂)R±(n, ∂)Q±(t, z).

Note first that

R−(n, ∂) =
(

0 1
−1 0

)
R+(n, ∂)

(
0 −1
1 0

)

P −(n, t, ∂) =
(

0 1
−1 0

)
P +(n, t, ∂)

(
0 −1
1 0

)
.

Using standard techniques, see e.g. [16] we obtain

(P +(n, t, ∂)R+(n, ∂)R−(m, ∂)∗P −(m, t, ∂)∗)−

= 1 − (−1)n+m

2

(
τn+1(t)

τn(t)
∂−1 τm−1(t)

τm(t)
−i τn+1(t)

τn(t)
∂−1 τm+1(t)

τm(t)

−i τn−1(t)

τn(t)
∂−1 τm−1(t)

τm(t)
− τn−1(t)

τn(t)
∂−1 τm+1(t)

τm(t)

)
. (3.6)

Since R−(m, ∂)∗ = R+(−m, ∂) = R+(m, ∂)−1, we deduce from (3.6) for m = n that
P −(m, t, ∂)∗ = P +(m, t, ∂)−1, hence (3.6) is equivalent to

(P +(n, t, ∂)R+(n − m, ∂)P +(m, t, ∂)−1)−

= 1 − (−1)n+m

2

(
τn+1(t)

τn(t)
∂−1 τm−1(t)

τm(t)
−i τn+1(t)

τn(t)
∂−1 τm+1(t)

τm(t)

−i τn−1(t)

τn(t)
∂−1 τm−1(t)

τm(t)
− τn−1(t)

τn(t)
∂−1 τm+1(t)

τm(t)

)
. (3.7)

Next take n = m in (3.5) and differentiate to t ′j , then one obtains (again using standard
techniques) the Sato equation

∂P +(n, t, ∂)

∂tj
= −

(
P +(n, t, ∂)

(
∂j 0
0 −(−∂)j

)
P +(n, t, ∂)−1

)
−

P +(n, t, ∂). (3.8)

Introduce the pseudo-differential operators

L(n, t, ∂) = P +(n, t, ∂)

(
∂ 0
0 −∂

)
P +(n, t, ∂)−1

J (n, t, ∂) = P +(n, t, ∂)

(
1 0
0 −1

)
P +(n, t, ∂)−1

then it is straightforward to show that [L(n, t, ∂), J (n, t, ∂)] = 0 and that the following Lax
equations hold:

∂L(n, t, ∂)

∂tj
= [(L(n, t, ∂)jJ (n, t, ∂))+, ∂L(n, t, ∂)]

∂J (n, t, ∂)

∂tj
= [(L(n, t, ∂)jJ (n, t, ∂))+, ∂J (n, t, ∂)].

(3.9)

The Sato equation leads to the following linear system:

L(n, t, ∂)�+(n, t, z) = �+(n, t, z)

(
z 0
0 −z

)

J (n, t, ∂)�+(n, t, z) = �+(n, t, z)

(
1 0
0 −1

)
∂�+(n, t, z)

∂tj
= (L(n, t, ∂)jJ (n, t, ∂))+�

+(n, t, z).

(3.10)



Bäcklund–Darboux transformations for the coupled KP hierarchy 4401

Using (3.5) one can show, in a similar way as in [16], that there exist differential operators
D(n ± 2, n, t, ∂), which are completely determined by P +(n, t, ∂) such that

�+(n ± 2, t, z) = D(n ± 2, n, t, ∂)�+(n, t, z).

Since we do not need this in the rest of the paper we shall not give the explicit form of the
D(n ± 2, n, t, ∂) here. Note that this reflects the statement of remark 2.1 for wavefunctions.

In the next section we will need the notion of ‘DKP or coupled KP eigenvectors’
generalizing the notion of KP eigenfunctions for the KP hierarchy. We call the vectors

�(n, t) =
(

φ1(n, t)

φ2(n, t)

)
coupled KP eigenvectors if they satisfy

∂�+(n, t)

∂tj
= (L(n, t, ∂)jJ (n, t, ∂))+�(n, t). (3.11)

One can construct such coupled KP eigenvectors from the wavefunction �+(n, t, z) as follows.
Let ai(z) = ∑

j∈Z
ai

j z
j , then

�(n, t) = Resz �+(n, t, z)

(
a1(z)

a2(z)

)
.

Kakei [19] obtained this coupled KP hierarchy in a different way, namely as a reduction of the
two-component KP hierarchy.

4. Bäcklund–Darboux transformations

Elementary Bäcklund–Darboux transformations are based on the following simple
observations in the Clifford algebra and Spin group orbit. First, if α ∈ V is a anisotropic
vector, i.e. (α, α) �= 0, then, by (2.6)

α−1 = 2α

(α, α)
. (4.1)

Hence α ∈ (C�V )×. From (2.6) and (4.1) we obtain

αvα−1 = −v + 2
(v, α)

(α, α)
α = −rα(v) (4.2)

thus even α ∈ Pin V .
Note next that

q = ψ+
− 1

2
· 1 =

(
ψ+

− 1
2

+ ψ−
1
2

)
· 1 1 = 1

2

(
ψ+

− 1
2

+ ψ−
1
2

)
· q.

Let τ ∈ Oν , then we can write τ as g · 1 (or g · q) for ν = 0 (respectively ν = 1) for certain
g ∈ Spin V . Take an α ∈ V , then α can be anisotropic or isotropic. If α is anisotropic then
αg ∈ Pin V and

αg
(
ψ+

− 1
2

+ ψ−
1
2

)
∈ Spin V.

Thus ατ ∈ Oν+1 or ατ = 0. If α is isotropic and ατ �= 0, we can find a β ∈ Ann τ such that
(α, β) �= 0. Then α + β is anisotropic and ατ = (α + β)τ , thus again ατ ∈ Oν+1.

Assume now, without loss of generality that α is anisotropic, then Ann ατ = rα (Ann τ).
Let Vα consist of all the elements v ∈ V such that (v, α) = 0. Then rα(v) = v for v ∈ Vα and
Vα ⊂ V of codimension 1. Hence Ann τ ∩ Vα ⊂ Ann τ of codimension 0 or 1. Since there
exists a w ∈ Ann τ such that (w, rα(w)) �= 0, rα(w) �∈ Ann τ and similarly w �∈ rα(Ann τ).



4402 J van de Leur

Hence τ and ατ satisfy the conditions of theorem 2.1. Hence we have proved the following
important proposition.

Proposition 4.1. If τ ∈ Oν and α ∈ V , then ατ ∈ Oν+1 ∪ {0} and if moreover ατ �= 0, then

(Ann τ + Ann ατ)/(Ann τ ∩ Ann ατ)

is two-dimensional and the induced bilinear form on it is non-degenerate.

In other words, if τ satisfies the DKP hierarchy then ατ also satisfies the DKP hierarchy
and both τ and ατ satisfy the modified DKP hierarchy. This observation is basic and forms
the basis of the elementary Bäcklund–Darboux transformations.

Remark 4.1. From section 2 we know that to any (algebraic) solution τ of the coupled KP
hierarchy there corresponds a maximal isotropic subspace Ann τ of V . By taking any non-
isotropic vector α ∈ V , we obtain a new solution of the coupled KP, whose maximal isotropic
subspace is rα(Ann τ). Hence, elementary Bäcklund–Darboux transformations are related to
simple reflections

rα(v) = v − 2
(v, α)

(α, α)
α v ∈ V

in the orthogonal group corresponding to V . The coupled KP solution τ and the choice of
α ∈ V will determine the form of the elementary Bäcklund–Darboux transformation uniquely.
This of course up to a scalar factor, since any scalar multiple of τ is again a solution.

In fact, if we write such an anisotropic α ∈ V as α = β + γ with (β, β) = (γ, γ ) = 0
and β ∈ Ann τ and γ �∈ Ann τ , then β �∈ rα(Ann τ) and γ ∈ rα(Ann τ) and

rα(Ann τ) ∩ Ann τ = {v ∈ Ann τ |(v, γ ) = 0}
= {v ∈ rα(Ann τ)|(v, β) = 0}.

We will now describe the elementary Bäcklund–Darboux transformations explicitly.
Every element α ∈ V (which may be isotropic) can be written as a linear combination of
the basis vectors ψ±

j . So let

α =
∑

j∈ 1
2 +Z

c+
−jψ

+
j + c−

−jψ
−
j (4.3)

then we can rewrite α as

α = Resz c+(z)ψ+(z) − c−(−z)ψ−(−z)

where

c±(z) =
∑

j∈ 1
2 +Z

c±
j z−z− 1

2 .

Let τ ∈ O0, then we can write τ = ∑
n τn(t)q

n, with τn(t) = 0 for n mod 2 �= 0. Write
σ = ατ , with σ = ∑

n σnq
n Then clearly,

σ =
∑

n

Resz(c
+(z)ψ+(z) − c−(−z)ψ−(−z))τn(t)q

n

= Resz c+(z)zn e−η(t,z)τn(t) eξ(t,z)qn+1 − c−(−z)z−n eη(t,−z)τn(t) e−ξ(t,−z)qn−1.

Hence,

σm(t) = Resz c+(z)zm−1 e−η(t,z)τm−1(t) eξ(t,z) − c−(−z)z−m−1 eη(t,−z)τm+1(t) e−ξ(t,−z).
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So, if we introduce the coupled KP eigenvectors

�(α;m, t) =
(

φ1(α;m, t)

φ2(α;m, t)

)
= Resz �+(m, t, z)

(
c+(z)

ic−(−z)

)
then (

σm(t)

−iσm−2(t)

)
= τm−1(t)�(α;m − 1, t). (4.4)

We next want to determine the wavefunction which corresponds to σ . Assume τn(t) �= 0 then
�+(n, t, z) is a wavefunction that corresponds to τ and consider �+(n± 1, t, z) to correspond
to σ . Since σ and τ satisfy the DKP hierarchy P +(n, t, ∂) and P +(n ± 1, t, ∂) satisfy (3.7).
Then it is straightforward to show that

P +(n + 1, t, ∂)R+(1, ∂)P +(n, t, ∂)−1

=
(

τn+1(t)

τn(t)
∂ τn(t)

τn+1(t)
+ τn+2(t)

τn+1(t)
∂−1 τn−1(t)

τn(t)
−i τn+2(t)

τn+1(t)
∂−1 τn+1(t)

τn(t)

−i τn(t)

τn+1(t)
∂−1 τn−1(t)

τn(t)
− τn(t)

τn+1(t)
∂−1 τn+1(t)

τn(t)

)

P +(n − 1, t, ∂)R+(1, ∂)P +(n, t, ∂)−1

=
( τn(t)

τn−1(t)
∂−1 τn−1(t)

τn(t)
−i τn(t)

τn−1(t)
∂−1 τn+1(t)

τn(t)

−i τn−2(t)

τn−1(t)
∂−1 τn−1(t)

τn(t)
− τn−1(t)

τn(t)
∂ τn(t)

τn−1(t)
− τn−2(t)

τn−1(t)
∂−1 τn+1(t)

τn(t)

)
.

(4.5)

Now using (4.4), we can rewrite this into

P +(n + 1, t, ∂)R+(1, ∂)P +(n, t, ∂)−1 = D(α; n + 1, n, t, ∂)

P +(n − 1, t, ∂)R+(1, ∂)P +(n, t, ∂)−1 = D(α; n − 1, n, t, ∂)
(4.6)

where

D(α; n + 1, n, t, ∂) =
(

φ1(α; n, t)

0

)
∂(φ1(α; n, t)−1 0)

+

(
φ2(α; n + 2, t)−1

−φ1(α; n, t)−1

)
∂−1(φ2(α; n, t) φ1(α; n, t))

D(α; n − 1, n, t, ∂) =
(

0
−φ2(α; n, t)

)
∂(0 φ2(α; n, t)−1)

+

(
φ2(α; n, t)−1

−φ1(α; n − 2, t)−1

)
∂−1(φ2(α; n, t) φ1(α; n, t))

(4.7)

are so-called elementary Bäcklund–Darboux operators for the coupled KP hierarchy, i.e

�+(n ± 1, t, z) = D(α; n ± 1, n, t, ∂)�+(n, t, z).

We formulate the above results in the main theorem of this paper, namely.

Theorem 4.1. Suppose that τ = ∑
n τn(t)q

n ∈ Oν and let �+(n, t, z) for n ∈ ν + 2Z be the
corresponding wavefunction. Let

α = Resz c+(z)ψ+(z) − c−(−z)ψ−(−z) ∈ V

where c±(z) ∈ C[z, z−1], then σ = ∑
n σn(t)q

n = ατ ∈ Oν+1 or = 0 and both σ and τ satisfy
the modified DKP hierarchy. Let

�(α; n, t) =
(

φ1(α; n, t)

φ2(α; n, t)

)
= Resz �+(n, t, z)

(
c+(z)

ic−(−z)

)
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for n ∈ ν + 2Z be the to α and τ corresponding eigenfunctions, then(
σn+1(t)

−iσn−1(t)

)
= τn(t)�(α; n, t).

Write �+(n ± 1, t, z) for the to σ corresponding wavefunctions, then

�+(n ± 1, t, z) = D(α; n ± 1, n, t, ∂)�+(n, t, z)

where the D(α; n±1, n, t, ∂) are the elementary Bäcklund–Darboux operators for the coupled
KP hierarchy as defined in (4.7).

Moreover, if α is anisotropic then

Ann σ = rα(Ann τ).

Now starting with the simplest solution of this coupled KP hierarchy, namely τ0 = 1 and
all other τn = 0 for n �= 0. This is the solution related to 1 ∈ F . One has as wavefunction

ψ±(0, t,±z) =
(

e∓η(t,z) 0
0 e±η(t,z)

)
.

Now repeatedly applying elementary Bäcklund–Darboux transformations with various Laurent
polynomials c±(z)′s, one obtains more complicated solutions. If one replaces the Laurent
polynomials by certain infinite series e.g. some combination of delta functions δ(z − a) =
z−1 ∑

n∈Z

(
z
a

)n
, one leaves the algebraic framework of this paper, however, one still obtains

solutions of the coupled KP.
If we start again from τ = 1 and we choose at every step of this process one of the c+(z)

or c−(z) always equal to zero, we obtain tau-functions that satisfy the KP hierarchy.
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